
Journal of Computational Physics 228 (2009) 8214–8248
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
First- and second-order finite volume methods for
the one-dimensional nonconservative Euler system

Stéphane Clain a,*, David Rochette b

a Institut de Mathématiques, CNRS UMR 5219, Université Paul Sabatier Toulouse 3, 118 route de Narbonne, F-31062 Toulouse Cedex 4, France
b Laboratoire Arc Electrique et Plasmas Thermiques, CNRS FRE 3120, Université Blaise Pascal, IUT de Montluçon, 03101 Montluçon Cedex, France

a r t i c l e i n f o a b s t r a c t
Article history:
Received 16 March 2009
Received in revised form 24 July 2009
Accepted 28 July 2009
Available online 19 August 2009

Keywords:
Euler system
Nonconservative
Hyperbolic
Finite volumes
Rusanov
MUSCL
Resonant
Riemann problem
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.07.038

* Corresponding author.
E-mail addresses: clain@mip.ups-tlse.fr (S. Clain)
Gas flow in porous media with a nonconstant porosity function provides a nonconservative
Euler system. We propose a new class of schemes for such a system for the one-dimen-
sional situations based on nonconservative fluxes preserving the steady-state solutions.
We derive a second-order scheme using a splitting of the porosity function into a discon-
tinuous and a regular part where the regular part is treated as a source term while the dis-
continuous part is treated with the nonconservative fluxes. We then present a classification
of all the configurations for the Riemann problem solutions. In particularly, we carefully
study the resonant situations when two eigenvalues are superposed. Based on the classifi-
cation, we deal with the inverse Riemann problem and present algorithms to compute the
exact solutions. We finally propose new Sod problems to test the schemes for the resonant
situations where numerical simulations are performed to compare with the theoretical
solutions. The schemes accuracy (first- and second-order) is evaluated comparing with a
nontrivial steady-state solution with the numerical approximation and convergence curves
are established.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Compressible fluid flows in porous media arise in many natural phenomena, for example the dust gas in volcanic eruption
[26]. In industrial processes, porous media are also widely used for filtration or protection purposes. For example, grids
(assimilated as a porous media) are employed to reduce gas velocity and absorb energy during an explosion in electrical
switchgears consecutive to an electrical accident [29]. Based on the space-average methods using the representative elemen-
tary volume concept [4], the mathematical modelling derives from the Euler equations homogenization where a new force
P@x/ appears to take the porosity variation into account leading to a so-called nonconservative problem. The homogenizated
Euler system is completed with the trivial equation @t/ ¼ 0 to provide an augmented nonconservative hyperbolic problem of
the form
@tU þ @xFðUÞ ¼ GðUÞ@x/; ð1Þ
where U stands for the conservative variable vector, FðUÞ is the conservative flux and GðUÞ@x/ represents the nonconserva-
tive contribution due to the / parameter derivative.

Other problems with nonconservative terms cast in this general system as multiphase and multifluid flow problems [31]
where the phase fraction a replaces the porosity, compressible gas flow in duct [3] where the variational cross section
. All rights reserved.
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identifies to the porosity and the shallow-water problem [36] where the variational bed elevation and breadth is similar to
the porosity.

It is well-known that the nonconservative term induced by the porosity variation leads to mathematical and numerical
difficulties. On one hand, the nonconservative term gives rise to the product of a distribution with a discontinuous function
in presence of shocks and the classical Rankine–Hugoniot condition does not hold any longer. On the other hand, the non-
conservative term is responsible of specifics steady-state situations which have to be preserved by the numerical scheme
leading to the so-called well-balanced property. An other difficulty is linked to the relative positions of the eigenvalues since
the problem is not strictly hyperbolic. In particular, the eigenvalue deriving from the nonconservative term can be super-
posed with the eigenvalues of the Euler system leading to the resonant situation. It results a complex composition of shocks
inside the interface defined by the characteristic field curves corresponding to the two superposed eigenvalues.

Dal Maso et al. [10] introduce a general framework to define the nonconservative product AðUÞ@xU for any variation
bounded function U ¼ UðxÞ where AðUÞ is a n� n matrix, continuous with respect to U. Such a product is obtained using
a path function w ¼ wðs;U�;UþÞ defined in the phase space linking any admissible state U� to any admissible state Uþ

and the Rankine–Hugoniot condition at a shock of velocity r writes (see also Le Floch [19])
Z 1

0
Aðwðs;U�;UþÞÞ@swðs;U�;UþÞds ¼ rðUþ � U�Þ:
If AðUÞ corresponds to the jacobian matrix of a flux function F then we recover the classical Rankine–Hugoniot condition and
we have
Z 1

0
Aðwðs;U�;UþÞÞ@swðs;U�;UþÞds ¼ FðUþÞ � FðU�Þ:
independently of the choice of the path w. In the particular situation of system (1), the nonconservative part GðUÞ@x/ is rel-
evant if the function / is not constant.

In a precursor work, Toumi [33] proposes a Roe-like scheme for conservative system introducing the Roe average matrix
between two states UL and UR
AðUL;URÞðUL � URÞ ¼
Z 1

0
AðUL þ sðUR � ULÞÞðUR � ULÞds;
where AðUÞ ¼ @UFðUÞ is the jacobian matrix of the flux F. An extension of the Toumi formula for nonconservative system has
been proposed by Gosse [15,16] for the Euler system and Parés and Castro [25] for the shallow-water problem where AðUÞ is
constituted of the jacobian matrix of FðUÞ and the nonconservative contribution GðUÞ. Such methods where the jacobian
matrix and the nonconservative flux are combined (the Q-methods [6]) are employed in numerous applications like
shallow-water [36] or porous media [28,27]. Extensions to higher-order scheme have been proposed using a ENO-WENO
reconstruction or the MUSCL technique [9,12,13,37].

In the problems mentioned above, it appears that the nonconservative term corresponds to a linearly degenerate simple
wave and the Riemann invariants are employed in place to the Rankine–Hugoniot condition. In particular, the Riemann prob-
lem resolution can be performed using in one hand the classical simple waves associated to the eigenvalues of the conser-
vative part and in the other hand the Riemann invariants associated to the nonconservative term. Based on this strategy, the
Riemann problem resolution for the scalar hyperbolic equation with source term has been done by Noussair [22]. The shal-
low-water problem with variable bed has been done by Alcrudo and Benkhaldoun [1], Chinnayya and Le Roux [7], Chinnayya
et al. [8] and Noussair [23]. The Riemann problem for the compressible duct flow has been considered by Andrianov [2] and
Andrianov and Warnecke [3] (see also Le Floch and Thanh [20] for the isentropic case). The Riemann problem for the two-
phase flow has been studied by Schwendeman [32] and Deledicque and Papalexandris [11]. We also mention the work of
Goatin and Le Floch [14] where the authors study the resonant situation in a general framework.

The delicate point is the construction of the simple wave associated to the nonconservative term. For a given left state,
there exists zero, one or two right states such that the Riemann invariants are preserved (see Goatin and Le Floch [14] for the
general case). In the situation when two solutions are possible, we usually have a subsonic (subcritical) flow and a supersonic
(supercritical) flow thus a new criterion (the continuation criterion Goatin and Le Floch [8] or the admissible criterion Goatin
and Le Floch [14], Isaacson and Temple [18]) is required to select a solution. Moreover, the particular situation where two
eigenvalues merge gives rise to a complex situation where three or more states coexist in the interface at the same moment.
A complete description is proposed by Chinnayya and Le Roux [7], Chinnayya et al. [8] for the shallow-water case while Le
Floch and Thanh [20] give the solution of the Euler system with isentropic flow problem for the resonant situation. Up to our
knowledge, there is not a complete description of the admissible configurations for the Riemann problem for the Euler
system.

From a numerical point of view, an important step has been done with the introduction by Bermúdez and Vázquez [5] of
the conservative property: the C-property while Greenberg and Leroux [17] propose a similar notion: the well-balanced con-
dition, for the scalar hyperbolic problem with a source term. We find also the same idea in Saurel and Abgrall [31] for the
two-phase flow problem where the authors propose a numerical nonconservative contribution which preserve the pressure
and the velocity of the steady-state solutions. All these conditions tend to the following criterion: the Riemann invariants
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associated to the nonconservative term have to be numerically preserved. A particular case is the fluid at rest where the stea-
dy-state configuration has to be maintained numerically. Parés and Castro [25] propose a general definition of well-balanced
scheme with order k based on the scheme capacity to preserve the Riemann invariant up to and order Dxk where Dx is the
characteristic length of the mesh.

In this paper, we propose a new class of scheme based on the criterion of well-balanced scheme introduced by Parés and
Castro [25]. The basic idea is to employ a generic numerical flux to solve the conservative part and we construct the non-
conservative flux such that the well-balanced criterion is satisfied. To this end, we propose the notion of intermediate state
we use to construct the numerical methods and we apply the technique to the classical Rusanov flux. A second-order scheme
based on a MUSCL resconstruction is proposed where the porosity is decomposed into regular and discontinuous functions.
The regular contribution is treated as a classical source term while the discontinuous contribution is taken into account with
the nonconservative flux.

To test the method, we have considered the Riemann problem and we present a new approach based on the configuration
identification where we propose a classification of the Riemann problem solutions. Indeed, the main difficulty with the non-
conservative problems is the nonstrictly hyperbolicity character of the system and eigenvalues can cross or merge. We de-
velop a technique where we describe all the admissible configurations which can appear and we use the classification to
solve the inverse Riemann problem introduced by [3]. In particularly we are able to compute complex situations including
the resonant cases and prove that rarefaction can only reach the sonic point from the lower porosity side. New Sod tube tests
corresponding to particular difficult situations are proposed to check the solvers. Numerical tests have been performed to
compare the approximated solution with the exact solution computed with the inverse Riemann problem algorithm. Other
simulations of a nontrivial steady-state solution are also proposed to measure the method accuracy.

The paper is organized as follows. In Section 2, we present the nonconservative Euler system and the properties of the
steady-state solutions. Sections 3 and 4 are devoted to the nonconservative schemes based on the Rusanov flux and its exten-
sion to the second-order using the MUSCL method and the porosity splitting principle. In Sections 5 and 6, we establish a
classification of all the configurations of the Riemann problem, including the resonant particular situations, and a generic
method to compute the exact solutions: the Riemann inverse problem. Finally in Section 7, we present in a first part a selec-
tion of Sod problems, scanning all the configurations, to test the numerical schemes in comparison with the exact solutions
and in a second part, we evaluate the schemes accuracy in the framework of a steady-state solution with regular porosity.
2. Nonconservative Euler system

2.1. Notations

We consider the one-dimensional nonconservative Euler system:
@t

/q
/qu

/E

0B@
1CAþ @x

/qu

/qu2 þ /P

/uðEþ PÞ

0B@
1CA ¼ 0

P@x/

0

0B@
1CA; ð2Þ
where / stands for the porosity, q the gas density, u the velocity, P the pressure and E the total energy composed of the inter-
nal energy e and the kinetic energy: E ¼ q 1

2 u2 þ e
� �

. In addition, to close the system, we use perfect gas law P ¼ ðc� 1Þqe
with c > 1. Note that the numerical scheme we shall present also deals with more complex pressure law given by function
P ¼ bPðq; eÞ which depends on the density and the internal energy.

The conservative quantities (or conservative state) are represented by vector U ¼ ð/q;/qu;/EÞwhich belongs to the con-
servative variable phase space Xc � Rþ � R� Rþ while the physical (primitive) variables vector V ¼ ð/;q;u; PÞ belongs to the
physical variable phase space Xp � Rþ � Rþ � R� Rþ. We have a one to one mapping ð/;UÞ ! bV ð/;UÞ such that
Vðx; tÞ ¼ bV ð/ðxÞ;Uðx; tÞÞ with inverse function V ! ð/; bUðVÞÞ such that bUðVðx; tÞÞ ¼ Uðx; tÞ. In the sequel, we shall drop the
hat symbol for the sake of simplicity.

The flux vector is given by
FðUÞ ¼
FqðUÞ
FuðUÞ
FeðUÞ

0B@
1CA ¼ /qu

/qu2 þ /P

/uðEþ PÞ

0B@
1CA; ð3Þ
while the nonconservative term writes
GðUÞ ¼
GqðUÞ
GuðUÞ
GeðUÞ

0B@
1CA ¼ 0

P

0

0B@
1CA: ð4Þ
Since U ¼ UðVÞ is a function of V, we adopt the notation FaðVÞ ¼ FaðUðVÞÞ and GaðVÞ ¼ GaðUðVÞÞ with a ¼ q;u; e.
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2.2. Steady-state solutions

The main challenge for the numerical schemes to solve nonconservative system is the steady-state solutions preservation.
Let us consider a regular stationary solution UðxÞ of system (2), we then have
d
dx

FðUðxÞÞ ¼ GðUðxÞÞ d/
dx

: ð5Þ
Assume that / ¼ /ðxÞ is a strictly monotone function on the interval ½x�; xþ�with respect to x and ranges between /� ¼ /ðx�Þ
and /þ ¼ /ðxþÞ, we denote U� ¼ Uðx�Þ and Uþ ¼ UðxþÞ. We change the variable x by the variable / where we state
UðxÞ ¼ eUð/ðxÞÞ ¼ eUð/Þ. Function eUð/Þ is then solution of the system
d
d/

FðeUð/ÞÞ ¼ GðeUð/ÞÞ: ð6Þ
We drop the tilde symbol for the sake of simplicity and we deduce that U belongs to an integral curve parameterized with /.
For a given U� and /�, we have (at least locally) a unique curveWð/; /�;U�Þ ¼ Wð/; V�Þ solution of (6) withWð/�; V�Þ ¼ U�.
Since Uþ belongs to the integral curve, we also have Wð/þ; V�Þ ¼ Uþ.

The main advantage to use / as a variable is that relation (6) still holds even if /ðxÞ is a discontinuous function of x. The
ability to handle the / discontinuity is of crucial importance for the Riemann problem. Indeed, function / is constant in the
open sets x < 0 and x > 0 and the nonconservative problem turns to a conservative one as noticed by [3]. The nonconserva-
tive part only acts at the interface x ¼ 0 where / jumps from /� to /þ. We smooth the / discontinuity using the following
linear approximation (see [8] or [17])
/eðxÞ ¼
/eðxÞ ¼ /�; x < �e;
/eðxÞ ¼ ððx� eÞ/� þ ðxþ eÞ/þÞ=ð2eÞ; x 2 ½�e;þe�;
/eðxÞ ¼ /þ; x > þe:

8><>:

Substituting / by /e, we get a smooth steady-state solution UeðxÞ for Eq. (5) and an equivalent smooth solution eUeð/Þ for Eq.
(6) for any e > 0. The point is that we can take the limit in relation (6) when e converges to 0.

In the case of the nonconservative Euler problem, system (6) is equivalent to the three relations
ðaÞ /qu ¼ D; ðbÞ d
d/
ð/qu2 þ /PÞ ¼ P; ðcÞ u2 þ 2c

c� 1
P
q
¼ H; ð7Þ
where D and H are constants which correspond to the mass flow rate and the enthalpy, respectively. If u ¼ 0, we get that P
and q are constant. Assuming now that u–0 then we eliminate u in the two last equations and Eq. (7b) provides
� D2

ð/qÞ3
d

d/
ð/qÞ þ 1

q
dP
d/
¼ 0;
while differentiation of Eq. (7c) yields
� D2

ð/qÞ3
d

d/
ð/qÞ þ c

c� 1

q dP
d/� P dq

d/

q2

 !
¼ 0:
We combine the two expressions and we get
dP
d/
¼ c

P
q

dq
d/

;

and we obtain the relation

P
qc ¼ S
by integration where S > 0 is the entropy. For a given initial state V�, the curveWð/;V�Þ is implicitly given by the three relations
/qu ¼ D; u2 þ 2c
c� 1

P
q
¼ H;

P
qc ¼ S; ð8Þ
where constants D;H and S are determined by the initial condition V�. We deduce from relation (8) an implicit relation
P ¼ Pð/Þ given by
D2

/2 þ
2c

c� 1
P

P
S

� �1
c

¼ H
P
S

� �2
c

: ð9Þ
3. Nonconservative scheme

Domain R is uniformly divided with cells Ki ¼ ½xi�1=2; xiþ1=2�; i 2 Z of length Dx where we set xi�1=2 ¼ iDx and xi ¼ xi�1=2 þ Dx
2

is the cell center. We denote by /i ¼ 1
jKi j
R

Ki
/ðxÞdx, by an

i an approximation of the mean value of a on cell Ki at time tn for the
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other physical variables a ¼ q;u; P and Un
i (respectively, Vn

i ) for an approximation of U (respectively, V) at time tn on the cell
Ki. We consider generic schemes of the form
Unþ1
i ¼ Un

i �
Dt
Dx

Fiþ1=2 þ G�iþ1=2 � Fi�1=2 � Gþi�1=2

� �
: ð10Þ
Flux Fiþ1=2 ¼ FðVi;Viþ1Þ is the conservative numerical flux across interface xiþ1=2 while G�iþ1=2 ¼ G
�ðVi;Viþ1Þ and

Gþi�1=2 ¼ G
þðVi�1;ViÞ represent the nonconservative contribution across the interface consecutive to the / space variation.

Real functions F a;G�;a and Gþ;aa ¼ q; u; e represent the three components of the flux vectors.

Remark 1. Since G�ðVL;VRÞ represent the nonconservative contributions due to the / variation, the numerical nonconser-
vative fluxes vanish when the porosity is constant hence we state that for any physical state V0
G�ðV0;V0Þ ¼ GþðV0;V0Þ ¼ 0:
For any physical state Vj 2 Xp, corresponding to the cells Kj; j ¼ i� 1; i; iþ 1, we introduce the three points operator H
HðVi�1;Vi;Viþ1Þ ¼ FðVi;Viþ1Þ þ G�ðVi;Viþ1Þ � FðVi�1;ViÞ � GþðVi�1;ViÞ; ð11Þ
hence the three points scheme reads
Unþ1
i ¼ Un

i �
Dt
Dx
H Vn

i�1;V
n
i ;V

n
iþ1

� �
;

with Vn
j ¼ bV /j;U

n
j

� �
; j ¼ i� 1; i; iþ 1.

3.1. Well-balanced flux criterion

Following the idea of Parés and Castro [25] and Parés [24], we introduce a definition of well-balanced schemes. We em-
phase that the definitions we propose are based on the / parameterization of the intergral curve instead of the x parame-
terization as it is proposed by Parés and Castro [25]. The motivation is that we want to define well-balanced schemes
even if / is discontinuous in space.

Definition 1 (Well-balanced scheme). Let Vi 2 Xp and Wð/; ViÞ the parameterization of the integral curve with /. For any
/j; j ¼ i� 1 and j ¼ iþ 1, we set Uj ¼ Wð/j; ViÞ and Vj ¼ bV ð/j;UjÞ.

(a) The scheme is exactly well-balanced for the state Vi if for any /j; j ¼ i� 1 and j ¼ iþ 1.
HðVi�1;Vi;Viþ1Þ ¼ 0:
(b) The scheme is well-balanced with order p for the state Vi if for any /j; j ¼ i� 1 and j ¼ iþ 1.
HðVi�1;Vi;Viþ1Þ ¼ Oðmaxðj/i � /i�1j; j/i � /iþ1jÞÞ
pþ1

:

(c) The scheme is exactly well-balanced (resp. well-balanced with order p) if it is exactly well-balanced (respectively,
well-balanced with order p) for any Vi 2 Xp.

Note that we recover the definition proposed by Parés and Castro [25] in the case where / is a local regular function in
space i.e. /j ¼ /ðxjÞ; j ¼ i� 1; i; iþ 1. Indeed, in this case, we have j/i � /i�1j ¼ OðDxÞ and j/i � /iþ1j ¼ OðDxÞ, hence
HðVðxi�1Þ;VðxiÞ;Vðxiþ1ÞÞ ¼ OðDxÞpþ1
:

The well-balanced definition induces a nonconservative flux consistency with the nonconservative term for steady-state
solution. To this end, we assume that the numerical flux FðV1;V2Þ and the physical flux FðUÞ are regular functions (at least
C1) and we denote by r1FðV1;V2Þ and r2FðV1;V2Þ the Jacobian matrices with respect to V1 and V2, respectively.

Proposition 1. Let /ðxÞ be a regular function on the neighbouring of xi, i.e. on the intervals ½xi�1; xiþ1� for Dx small enough, and
Ui 2 Xc a given conservative state. We denote by UðxÞ ¼ Wð/ðxÞ; ViÞ the local regular solution of Eq. (5) and we set
/j ¼ /ðxjÞ;Uj ¼ UðxjÞ ¼ Wð/j; ViÞ;Vj ¼ bV ðUj;/jÞ for j ¼ i� 1; iþ 1. Assume thatH is well-balanced with order p P 1 then we have
1
Dx
G�ðVi;Viþ1Þ � GþðVi�1;ViÞ½ � ¼ �GðxiÞ@x/ðxiÞ þ OðDxÞ: ð12Þ
Proof. To prove the proposition, we recall the notation where we distinguish the vector UðxÞwith the function bUðVÞ. Thanks
to the consistency condition FðV ;VÞ ¼ FðbUðVÞÞ, we deduce
r1FðV ;VÞ þ r2FðV ;VÞ ¼ rUFðbUðVÞÞ:rV
bUðVÞ:
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On the one hand, since we have a pth order scheme with p P 1, we can write
1
Dx
½FðVi;Viþ1Þ � FðVi�1;ViÞ� þ

1
Dx
½G�ðVi;Viþ1Þ � GþðVi�1;ViÞ� ¼ OðDxÞp:
On the other hand, we introduce vector FðVi;ViÞ such that
1
Dx
½FðVi;Viþ1Þ � FðVi�1;ViÞ� ¼

1
Dx
½FðVi;Viþ1Þ � FðVi;ViÞ þ FðVi;ViÞ � FðVi�1;ViÞ�:
Writing the Taylor expansion for FðVi;Viþ1Þ ¼ FðVðxiÞ;Vðxi þ DxÞÞ yields
1
Dx
½FðVi;Viþ1Þ � FðVi;ViÞ� ¼ r2FðVi;ViÞ@xVðxÞjx¼xi

þ OðDxÞ:
In the same way, we have
1
Dx
½FðVi;ViÞ � FðVi�1;ViÞ� ¼ r1FðVi;ViÞ@xVðxÞjx¼xi

þ OðDxÞ:
Hence we get with the consistency property

1
Dx
½FðVi;Viþ1Þ � FðVi�1;ViÞ� ¼ rUFðbUðVÞÞjV¼Vi

rbUðVÞjV¼Vi
@xVðxÞjx¼xi

þ OðDxÞ ¼ @xðFðUðxÞÞjx¼xi
þ OðDxÞ:
We then deduce
1
Dx
½G�ðVi;Viþ1Þ � GþðVi�1;ViÞ� þ @xðFðUðxÞÞjx¼xi

¼ OðDxÞ:
Since UðxÞ belongs to the integral curve, relation (5) is satisfied and we get
@xFðUðxÞÞjx¼xi
¼ GðUÞjU¼Ui

@x/ðxÞjx¼xi
;

thus relation (12) holds. h

We now turn to the discontinuous case for the Riemann problem with initial conditions Uðx;0Þ ¼ UL;/ðxÞ ¼ /L for
x < 0 and Uðx;0Þ ¼ UR;/ðxÞ ¼ /R for x > 0. To deal with a steady-state problem, we assume that UR ¼ Wð/R; VLÞ i.e. UL

and UR belong to the same integral curve. Since we have a stationary solution, we reduce the study on the cells
K0 ¼ ½�Dx;0� and K1 ¼ ½0;Dx� which share the interface x ¼ 0 where UðxÞ ¼ UL on K0 while UðxÞ ¼ UR on K1.

Proposition 2. The following consistency relations hold:
(a) If H is a pth order well-balanced scheme, then
GþðVL;VRÞ � G�ðVL;VRÞ ¼
Z /R

/L

GðWð/; VLÞÞd/þ Oðj/R � /LjÞ
pþ1

: ð13Þ
(b) If H is an exact well-balanced scheme, then
GþðVR;VLÞ � G�ðVL;VRÞ ¼
Z /R

/L

GðWð/; VLÞÞd/: ð14Þ
Proof. We only deal with the situation where H is a pth order well-balanced scheme, the case of an exact well-balanced
scheme is similar and provides relation (14). On the cell K0, we write
HðVL;VL;VRÞ ¼ FðVL;VRÞ þ G�ðVL;VRÞ � FðVL;VLÞ � GþðVL;VLÞ;
while we have on cell K1
HðVL;VR;VRÞ ¼ FðVR;VRÞ þ G�ðVR;VRÞ � FðVL;VRÞ � GþðVL;VRÞ:
Using Remark 1 and adding the two relations, the definition of a pth order well-balanced scheme yields
FðVL;VRÞ þ G�ðVL;VRÞ � FðVL;VLÞ þ FðVR;VRÞ � FðVL;VRÞ � GþðVL;VRÞ ¼ Oðj/R � /LjÞ
pþ1

:

Since UL and UR belong to the same integral curve, we have by integration of Eq. (6)
FðVR;VRÞ � FðVL;VLÞ ¼ FðURÞ � FðULÞ ¼
Z /R

/L

GðWð/; VLÞÞd/:
Hence relation (13) holds. h
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3.2. The intermediate state

To construct explicitly the nonconservative schemes, we propose a new technique (up to our knowledge) based on inter-
mediate states which provide expressions for the nonconservative flux G�. More precisely, let us consider three physical
states Vi�1 ¼ Vð/i�1;Ui�1Þ;Vi ¼ Vð/i;UiÞ and Viþ1 ¼ Vð/iþ1;Uiþ1Þ given on cell Ki�1;Ki and Kiþ1, respectively such that
Ui�1 ¼ Wð/i�1; ViÞ; Uiþ1 ¼ Wð/iþ1; ViÞ:
For the couple ð/i�1;/iÞ, we introduce an intermediate value /�i�1=2 and its corresponding conservative state
U�i�1=2 ¼ Wð/

�
i�1=2; ViÞ and physical state V�i�1=2 ¼ bV /�i�1=2;U

�
i�1=2

� �
at the interface xi�1=2. In the same way, we define

/�iþ1=2;U
�
iþ1=2 and V�iþ1=2 at the interface xiþ1=2. The goal is to choose /�i�1=2 and /�iþ1=2 such that
FðVi;Vi�1Þ � FðV�i�1=2Þ ¼ Oðj/i � /i�1j
pþ1Þ:
Proposition 3. For any intermediate states V�i�1=2 and V�iþ1=2 operator H writes
HðVi�1;Vi;Viþ1Þ ¼ FðVi;Viþ1Þ � F V�iþ1=2

� �
þ G�ðVi;Viþ1Þ þ

Z /�iþ1=2

/i

GðWð/; ViÞÞd/

" #

� FðVi�1;ViÞ � F V�i�1=2

� �
þ GþðVi�1;ViÞ þ

Z /�i�1=2

/i

GðWð/; ViÞÞd/

" #
: ð15Þ
Proof. Since the conservative states U�i�1=2 and U�iþ1=2 belong to the same integral curve Wð/; ViÞ, we have
F V�i�1=2

� �
� FðViÞ ¼ F U�i�1=2

� �
� FðUiÞ ¼

Z /�i�1=2

/i

GðWð/; ViÞÞd/;

F V�iþ1=2

� �
� FðViÞ ¼ F U�iþ1=2

� �
� FðUiÞ ¼

Z /�iþ1=2

/i

GðWð/; ViÞÞd/:
On the other hand, definition of the numerical scheme H writes
HðVi�1;Vi;Viþ1Þ ¼ FðVi;Viþ1Þ þ G�ðVi;Viþ1Þ � FðVi�1;ViÞ � GþðVi�1;ViÞ
¼ ½FðVi;Viþ1Þ � FðViÞ þ G�ðVi;Viþ1Þ� � ½FðVi�1;ViÞ � FðViÞ þ GþðVi�1;ViÞ�:
Substitution of FðViÞ in the last relation provides relation (15). h

Note that no regularity assumption has been made to obtain relation (15). Assume that physical states VL and VR corre-
spond to a steady-state discontinuous solution such that UR ¼ Wð/R; VLÞ. Relation (15) then writes
HðVL;VL;VRÞ ¼ FðVL;VRÞ � FðV�Þ þ
Z /�

/L

GðWð/; ViÞÞd/þ G�ðVL;VRÞ
" #

� FðVL;VLÞ � FðVLÞ þ
Z /L

/L

GðWð/; ViÞÞd/þ GþðVL;VLÞ
� 	

;

where /� is an intermediate value between /L and /R and U� ¼ Wð/�; VLÞ;V� ¼ bV ð/�;U�Þ. After simplification, we have on
cells K0 and K1
HðVL;VL;VRÞ ¼ FðVL;VRÞ � FðV�Þ þ G�ðVL;VRÞ þ
Z /�

/L

GðWð/; ViÞÞd/; ð16Þ

HðVL;VR;VRÞ ¼ FðVL;VRÞ � FðV�Þ þ GþðVL;VRÞ þ
Z /�

/R

GðWð/; ViÞÞd/: ð17Þ
4. The Rusanov nonconservative scheme

We elaborate a well-balanced scheme based on a very simple flux initially proposed by Rusanov [30]. We then construct
the nonconservative flux such that the well-balanced property is achieved using an adapted intermediate state. Saurel and
Abgrall [31] use the same flux for the multiphase flows while Andrianov [2] introduces the Rusanov flux for the Baer–Nunz-
iato problem. The main advantages are the robustness and the simplicity of such a flux which can be used with complex
pressure law. The main drawbacks are the important diffusion generated by the diffusion term to stabilize the scheme
and contact discontinuities are not well-determined since the solver does not take into account the intermediate waves
[35]. It is noticeable that second-order schemes like MUSCL technique strongly reduces the diffusion effect and the Rusanov
flux usage is relevant in a second-order scheme perspective.
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4.1. The Rusanov conservative flux F

We first begin with the expression of the conservative part of the flux which is an adaptation of the original Rusanov flux
for the Euler problem with porosity. The original Rusanov flux FðVL;VRÞ for the classical Euler system (i.e. with / ¼ 1) asso-
ciated to the physical flux FðVÞ writes
FðVL;VRÞ ¼
FðVLÞ þ FðVRÞ

2
� kðUR � ULÞ;
where
k ¼ 1
2

supðcL þ juLj; cR þ juRjÞ;
with cL (respectively, cR) the sound velocity associated to state VL (respectively, VR). We shall modify the classical Rusanov
scheme for the following reason. Consider a Riemann problem with VL ¼ ð/L; �q;0; PÞ and VR ¼ ð/R; �q;0; PÞwith �q; P 2�0;þ1½.
Since UL and UR belong to the same integral curve, we have a steady-state solution.

The first and third components of the nonconservative contribution G are null therefore the first and third components of
the nonconservative numerical flux G� vanish. In particular, the scheme for the mass equation writes on cell K0
q�0 ¼ �q� Dt
Dx

�cð/R �q� /L �qÞ;
with �c the sound velocity associated to the configuration and q�0 the computed density in K0 after a first iteration. If the
porosity is not constant i.e. /L–/R, the density changes from �q to q�–�q after the first step due to the viscosity contribution
and the steady-state solution is not preserved. A similar situation also happens with the energy equation. To preserve the
steady-state solution, we introduce the following Rusanov flux adapted to the porosity variation situation:
FðVL;VRÞ ¼
FðVLÞ þ FðVRÞ

2
� VðVL;VRÞ; ð18Þ
with
VðVL;VRÞ ¼ k/LR

qR � qL

qRuR � qLuL

ER � EL

0B@
1CA
where /LR ¼maxð/L;/RÞ. Since / 2�0;1�, we can also choose /LR ¼ 1.

4.2. The Rusanov nonconservative flux G�

We now construct the nonconservative flux G� in order to preserve the steady-state solutions. Since the nonconservative
contribution only acts on the impulsion equation, we have G�;a ¼ 0 for a ¼ q and e. We now turn to the construction of the
nonconservative flux G�;u. Relation (15) suggests that we have to define the intermediate states such that the conservative
contribution writes
FðVi;Viþ1Þ � F V�iþ1=2

� �h i
� FðVi�1;ViÞ � F V�i�1=2

� �h i
¼ OðD/Þpþ1

;

while the nonconservative contribution writes
Z /�iþ1=2

/i

GðWð/; ViÞÞd/þ G�ðVi;Viþ1Þ
" #

�
Z /�i�1=2

/i

GðWð/; ViÞÞd/þ GþðVi�1;ViÞ
" #

¼ OðD/Þpþ1
:

To explicite the scheme, we have to fix the intermediate values /�i�1=2 and /�iþ1=2. We propose here to set
/�i�1=2 ¼
/i�1 þ /i

2
; /�iþ1=2 ¼

/iþ1 þ /i

2
: ð19Þ
and we define the Rusanov nonconservative fluxes by:
G�ðVi;Viþ1Þ ¼ �
/iþ1 � /i

2

0
Pi

0

0B@
1CA; GþðVi�1;ViÞ ¼ þ

/i � /i�1

2

0
Pi

0

0B@
1CA: ð20Þ
4.2.1. Nonconservative Rusanov scheme order: the regular case
To study the nonconservative scheme order, we first deal with the regular situation where we assume that ð/ðxÞ;UðxÞÞ is a

regular steady-state solution.
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Lemma 1. We have the following error order
FðVi;Viþ1Þ � F V�iþ1=2

� �h i
� FðVi�1;ViÞ � F V�i�1=2

� �h i
¼ OðD/2Þ; ð21Þ
with D/ ¼maxðj/iþ1 � /ij; j/i � /i�1jÞ.

Proof. The conservative part of the flux is composed of a difference of flux
Aiþ1=2 ¼
FðViþ1Þ þ FðViÞ

2
� F V�iþ1=2

� �
;

and the viscous term
Biþ1=2 ¼ �kiþ1=2

qiþ1 � qi

qiþ1uiþ1 � qiui

Eiþ1 � Ei

0B@
1CA;
with U�iþ1=2 ¼ W /�iþ1=2; Vi

� �
;V�iþ1=2 ¼ bV /�iþ1=2;U

�
iþ1=2

� �
and kiþ1=2 ¼ 1

2 maxðjuij þ ci; juiþ1j þ ciþ1Þ. Since Uiþ1 ¼ Wð/iþ1; ViÞ, we

have FaðViÞ ¼ FaðViþ1Þ ¼ FaðV�iþ1=2Þ for a ¼ q; e and we obtain the simpler expression
Aiþ1=2 ¼
0

FuðViÞþFuðViþ1Þ
2 � FuðV�iþ1=2Þ

0

0B@
1CA:
We denote D/iþ1=2 ¼ /iþ1 � /i. The Taylor expansion of function Wð/; ViÞ gives
U�iþ1=2 � Ui ¼ W
/i þ /iþ1

2
; Vi

� �
�Wð/i; ViÞ ¼ �

dW
d/

/i þ /iþ1

2
; Vi

� �
D/iþ1=2

2
þ O D/2

iþ1=2

� �
;

U�iþ1=2 � Uiþ1 ¼ W
/i þ /iþ1

2
; Vi

� �
�Wð/iþ1; ViÞ ¼ þ

dW
d/

/i þ /iþ1

2
; Vi

� �
D/iþ1=2

2
þ O D/2

iþ1=2

� �
:

We deduce that U�iþ1=2 � Ui ¼ OðD/iþ1=2Þ;U�iþ1=2 � Uiþ1 ¼ OðD/iþ1=2Þ and the impulsion flux difference writes
FuðViþ1Þ þ FuðViÞ
2

� FuðV�iþ1=2Þ ¼
1
2
½FuðUiþ1Þ � FuðU�iþ1=2Þ� þ

1
2
½FuðUiÞ � FuðU�iþ1=2Þ�

¼ 1
2
rUFu U�iþ1=2

� �
Uiþ1 � U�iþ1=2

� �
þ 1

2
rUFu U�iþ1=2

� �
Ui � U�iþ1=2

� �
þ OðD/2

iþ1=2Þ:
We finally obtain
FuðViþ1Þ þ FuðViÞ
2

� Fu V�iþ1=2

� �
¼ OðD/2

iþ1=2Þ; ð22Þ
hence we get Aiþ1=2 ¼ OðjD/j2Þ. In the same way, we have Ai�1=2 ¼ OðjD/j2Þ.
We now focus on the viscous contribution Biþ1=2 � Bi�1=2. A simple calculation gives
Biþ1=2 � Bi�1=2 ¼ �kiþ1=2

qiþ1 � qi
qiþ1uiþ1 � qiui

Eiþ1 � Ei

0@ 1Aþ ki�1=2

qi � qi�1
qiui � qi�1ui�1

Ei � Ei�1

0@ 1A
¼ ðki�1=2 � kiþ1=2Þ

qiþ1 � qi
qiþ1uiþ1 � qiui

Eiþ1 � Ei

0@ 1A� ki�1=2

qiþ1 � 2qi þ qi�1
qiþ1uiþ1 � 2qiui þ qi�1ui�1

Eiþ1 � 2Ei þ Ei�1

0@ 1A;

where kiþ1=2 ¼ 1

2 maxðjuij þ ci; juiþ1j þ ciþ1Þ and ki�1=2 ¼ 1
2 maxðjuij þ ci; jui�1j þ ci�1Þ. Since function maxða; bÞ is a 1-Lipschitz-

ian function, we get ðki�1=2 � kiþ1=2Þ ¼ OðD/Þ. On the other hand, we have ai � ai�1 ¼ OðD/Þ and aiþ1 � 2ai þ ai�1 ¼ OðD/2Þ
for a ¼ q;qu; E. We finally obtain
Biþ1=2 � Bi�1=2 ¼ OðD/2Þ; ð23Þ
and estimate (21) holds from relations (22) and (23). h

Remark 2. Note that relation (22) holds even if the steady-state is not regular while estimate (23) is obtained under the
regularity assumption. It is of numerical interest to see that the order discrepancy comes from the viscosity stability terms
Biþ1=2 and Bi�1=2 when we deal with irregular solutions.

We now treat the nonconservative numerical flux.
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Lemma 2. We have the following error order
Z /�iþ1=2

/i

GðWð/; ViÞÞd/þ G�ðVi;Viþ1Þ
" #

�
Z /�i�1=2

/i

GðWð/; ViÞÞd/þ GþðVi�1;ViÞ
" #

¼ OðD/Þ2: ð24Þ
Proof. Since G�;a ¼ 0 and Ga ¼ 0 for components a ¼ q and a ¼ e, we only deal with the impulsion equation. Using the mid-
point approximation formula for the integral, we have
Ci ¼
Z /�iþ1=2

/i

GuðWð/; ViÞÞd/þ G�;uðVi;Viþ1Þ
" #

�
Z /�i�1=2

/i

GuðWð/; ViÞÞd/þ Gþ;uðVi�1;ViÞ
" #

¼
Z /�iþ1=2

/i

Pð/Þd/� Pi
/iþ1 � /i

2

" #
�

Z /�i�1=2

/i

Pð/Þd/þ Pi
/i � /i�1

2

" #
¼
Z /�iþ1=2

/�i�1=2

Pð/Þd/� Pi
/iþ1 � /i�1

2

¼ Pð/iÞ /�iþ1=2 � /�i�1=2

� �
� Pi

/iþ1 � /i�1

2
þ OðD/2Þ ¼ OðD/2Þ:
Hence, we deduce estimate (24). h

Combining the two lemmas, we have the following theorem for the regular steady-state solutions.

Theorem 1. The scheme H using the modified Rusanov conservative flux (18) and the associated Rusanov nonconservative flux
(20) is a first-order scheme following Definition 1.
4.2.2. Nonconservative Rusanov scheme order: the discontinuous case
We now turn to the case of a discontinuous steady-state solution where /ðxÞ jumps from /L to /R at x ¼ 0. We define the

steady-state solution using the / parameterization Uð/Þ ¼ Wð/; VLÞ of the integral curve of Eq. (6). We denote by
K0 ¼ ½�Dx;0� and K1 ¼ ½0;Dx� the cells on both side of the discontinuity and we study the order of HðVL;VL;VRÞ on K0 and
HðVL;VR;VRÞ on K1. In the sequel, we set /� ¼ /Lþ/R

2 ;U� ¼ Wð/�; VLÞ and V� ¼ bV ð/�;U�Þ.
Proposition 4. Assume that the velocity is null then the scheme is exactly well-balanced:
HðVL;VL;VRÞ ¼ HðVL;VR;VRÞ ¼ 0: ð25Þ
Proof. If uL ¼ 0, we deduce that uR ¼ 0 thanks to the parameterization (8) and conclude that qL ¼ qR and EL ¼ ER. The vis-
cosity contribution vanishes and we have
HðVL;VL;VRÞ ¼ FðVL;VRÞ þ G�ðVL;VRÞ � FðVL;VLÞ ¼
FðVLÞ þ FðVRÞ

2
� FðVLÞ þ G�ðVL;VRÞ

¼ 1
2

0
PR/R � PL/L

0

0@ 1A� 0
/R�/L

2 PL

0

0@ 1A ¼ 0:
Then the scheme is exactly well-balanced. h

Remark 3. If the velocity does not vanish, we loose the first-order accuracy due to the viscosity contribution. Moreover, the
nonconservative flux writes
Z /�

/L

Pð/Þd/� PL
/R � /L

2
¼ OðD/Þ;
which is not enough to provide a first-order scheme in the sense of Definition 1. To obtain a better accuracy, one can consider
a more precise numerical integration formula to approximate the integral. For example, the trapezoidal rule gives
Z /�

/L

Pð/Þd/� PL þ P�

2
ð/� � /LÞ ¼ OðD/2Þ;
but the intermediate value P� has to be determined using the implicit relation (9).
4.3. Second-order nonconservative scheme

Second-order schemes provide more precise approximation of the solution and less viscosity in the vicinity of shocks. We
propose a second-order method based on the MUSCL reconstruction to provide better accuracy of the numerical approxima-
tion. Our method derives from the following remark, if / is regular (at least differentiable) then @x/ is a volumic source term.
On the contrary, if / presents a discontinuity at point x0, then @x/ is a dirac distribution supported by the point x0, hence a
punctual source term. The second-order method we proposed is based on the following porosity decomposition
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/ðxÞ ¼ /dðxÞ þ /rðxÞ;
where /d and /r are, respectively the discontinuous part and the regular part (at least C1). From a numerical point of view,
the regular contribution is approximated by a volumic term while the discontinuous part is taken into account with the non-
conservative flux. If we consider the first-order scheme, / is a constant piecewise function and /r ¼ 0. The nonconservative
contribution is exclusively evaluated with the nonconservative numerical flux. We now turn to the second-order situation
where we use the classical MUSCL technique.

4.3.1. The MUSCL reconstruction
For each interface at point xiþ1=2, we aim to compute new values V�iþ1=2 and Vþiþ1=2 on both side of the interface. We then

substitute the first-order numerical flux FðVi;Viþ1Þ with the second-order numerical flux F V�iþ1=2;V
þ
iþ1=2

� �
to compute the

conservative flux across the interface xiþ1=2. We proceed in the same way with the nonconservative flux.
For any approximation ðaiÞi2Z with a ¼ /;q;u; P, we define the slopes
ra
iþ1=2 ¼

aiþ1 � ai

Dx
;

which represent an approximation of @xa on the interfaces xiþ1=2; i 2 Z. To evaluate an approximation ra
i of the derivative on

cell Ki, we set
ra
i ¼ w ra

i�1=2;r
a
iþ1=2

� �
; ð26Þ
where the function w is a limiter function. For example, we use the minmod limiter
wðp; qÞ ¼ minmodðp; qÞ ¼
0 if pq 6 0;
p
jpj minðjpj; jqjÞ if pq > 0:

(
ð27Þ
We then propose the decomposition of / ¼ /dðxÞ þ /rðxÞ such that /dðxÞ is constant piecewise, /rðxÞ is continuous linear
piecewise where @x/

rðxÞ ¼ r/
iþ1=2 on each cell Ki. We define the new values on the interface xiþ1=2 setting for a ¼ /;q;u; P
a�iþ1=2 ¼ ai þ ri�1
Dx
2
; aþiþ1=2 ¼ aiþ1 � ri

Dx
2
:

4.3.2. Second-order nonconservative scheme
Using the generic finite volume scheme proposed in (10), we consider the second-order scheme
Unþ1
i ¼ Un

i �
Dt
Dx

F Vn;�
iþ1=2;V

n;þ
iþ1=2

� �
þ G� Vn;�

iþ1=2;V
n;þ
iþ1=2

� �n o
� F Vn;�

i�1=2;V
n;þ
i�1=2

� �
þ Gþ Vn;�

i�1=2;V
n;þ
i�1=2

� �n o
þ SðVn;�

iþ1=2;V
n;þ
i�1=2Þ

h i
;

ð28Þ

with
SðVn;�
iþ1=2;V

n;þ
i�1=2Þ ¼

0
Pn

i r
/
i Dx

0

0B@
1CA ¼ 0

Pþ
i�1=2þP�iþ1=2

2 /�iþ1=2 � /þi�1=2

� �
0

0B@
1CA: ð29Þ
The term S corresponds to the contribution of the regular part of P@x/.

Remark 4. If / is a constant piecewise function, we does not recover exactly the first-order scheme since the MUSCL
reconstruction provides new values for q;u and P at the interfaces. On the other hand, if / is regular, the / jump at the
interface /þiþ1=2 � /�iþ1=2 is very small, of order Dx2, hence the principal nonconservative contribution is furnished by the
source term S.
5. The Riemann problem configurations

In this section, we present a complete description of the admissible configurations, i.e. the succession of simple waves
separated by constant states, for the nonconservative Euler system. Two major situations arise whether all the waves are
distinct or two waves are superposed: the resonant cases. The resonant cases have been analysed by Noussair [22] in the
framework of a scalar nonconservative problem with a source term. The works of Noussair [23] and Chinnayya et al. [8] deal
with the resonant configurations for the shallow-water problem while Le Floch and Thanh [20] treat the resonant case for the
isentropic nonconservative Euler problem. The configurations in the resonant case for a general nonconservative hyperbolic
system are presented in Goatin and Le Floch [14] where a sharp study of the interactions between a genuinely nonlinear
characteristic field with the linearly degenerated field associated to the nonconservative term is performed (see also the pio-
neer works of Isaacson and Temple [18]).

We do not intend to solve the Riemann problem leading to huge complex nonlinear problems as Andrianov and Warnecke
[3], Goatin and Le Floch [14], Le Floch and Thanh [20], Noussair [23], Chinnayya et al. [8] but we here propose a construction
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of all the configurations based on three criterions: the configuration stability criterion, the sign criterion and the Mach cri-
terion we shall define in the sequel. A study of the eigenvalue sign and the criterions allow to disqualify the noncompatible
configurations. Moreover, a specific study of the linearly degenerated field associated to the nonconservative term brings
new informations to construct the configurations for the resonant case.

5.1. Eigenvalues and eigenvectors

To study the nonconservative Euler system which describes gas flow in porous media, we add equation @t/ ¼ 0 to system
(2), named the augmented system (see Andrianov and Warnecke [3], Goatin and Le Floch [14] for justifications) leading to a
problem with four unknowns. For regular solution V, the augmented system equipped with the perfect gas law P ¼ ðc� 1Þqe
with c > 1 can be rewritten in the form
@tV þ AðVÞ@xV ¼ 0; with AðVÞ ¼

0 0 0 0
qu
/ u q 0

0 0 u 1
q

cPu
/ 0 cP u

0BBBB@
1CCCCA:
We get a non-strictly hyperbolic system with the eigenvalues

k0 ¼ 0; k1 ¼ u� c; k2 ¼ u; k3 ¼ uþ c;
and the associated eigenvectors
R0 ¼

/ðu2 � c2Þ
�qu2

uc2

�qu2c2

0BBB@
1CCCA; R1 ¼

0
�q
c

�qc2

0BBB@
1CCCA; R2 ¼

0
1
0
0

0BBB@
1CCCA; R3 ¼

0
q
c

qc2

0BBB@
1CCCA:
The characteristic fields (or simple waves) associated to eigenvalues k1 and k3 are genuinely nonlinear while the character-
istic fields associated to k0 and k2 are linearly degenerated. We say that V is a subsonic, sonic or supersonic state if we have
u2 < c2;u2 ¼ c2 or u2 > c2, respectively.

Eigenvalue k0 ¼ 0 characterizes the change of porosity and a new difficulty arises since we are no longer able to order the
four eigenvalues. In particular, for sonic state V, we have only three distinct eigenvalues (k0 ¼ k1 or k0 ¼ k3).

Eigenvectors R1;R2 and R3 correspond to the classical Euler system eigenvectors with constant porosity. It results that the
simple waves parameterization (shock, rarefaction, contact discontinuity) associated to each eigenvalue is identical to the
classical Euler system ones.

5.2. The stability configuration criterion

In the sequel, we denote by k�w the simple wave associated to the eigenvalue kk. For k ¼ 1 or k ¼ 3; k� r represents a
rarefaction whereas k� s represents a shock. For k ¼ 0 and k ¼ 2 the simple waves are contact discontinuities we still denote
k�w. For given left and right states VL and VR, we seek an autosimilar solution of the Riemann problem we shall characterize
with the notion of configuration as follows.

Definition 2 (Configuration). A configuration is the succession of simple waves from left to right which separate constant
states.

As an example, the configuration C ¼ f1� r; 0�w; 2�w; 3� sg means that we have four simple waves separating five
constant states: VL is linked to the state Vl by the 1� r rarefaction, Vl is linked to Vr by the contact discontinuity 0�w while
Vr is linked to Va by the contact discontinuity 2�w. At last Va is linked to VR by the 3� s shock (see Fig. 1).

We now introduce a criterion to select the configurations which are of interest from a numerical point of view. Each sim-
ple wave k�w corresponds to a one-parameter characteristic curve in the phase space. Existence of a solution for the Rie-
mann problem means that there exists a path in the phase space from VL to VR following the characteristic curves given by
the configuration. Since V is a vector of R4, we need four independent characteristic curves to link VL to VR.

Definition 3 (Configuration stability criterion). Assume that for given left and right states VL;VR we have a solution for the
Riemann problem with a given configuration X. We say that the configuration is stable if there exists a small enough e > 0
such that: for any physical states eV R and eV L with jeV L � VLj < e and jeV R � VRj < e, there exists a solution for the Riemann
problem associated to the initial states eV L and eV R with the same configuration X.

For example, let us consider the Riemann problem with VL ¼ ð/L ¼ 1;qL ¼ 1;uL ¼ 10; PL ¼ 105Þ and
VR ¼ ð/R ¼ 1;qR ¼ 5;uR ¼ 10; PR ¼ 105Þ, the associated configuration is constituted of a unique contact discontinuity
X ¼ f2�wg. If one slightly modifies the pressure, the velocity or the porosity, new simple waves appear and configuration
X no longer holds. The goal of the stability criterion is to only focus on the configurations which are important from a numer-
ical point of view.



Fig. 1. An example of configuration: C ¼ f1� r; 0�w; 2�w; 3� sg.
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5.3. The sign criterion

Let us denote by P� ¼ fðx; tÞ; x < 0; t > 0g and Pþ ¼ fðx; tÞ; x > 0; t > 0g the two half-planes. As noticed Andrianov and
Warnecke [3], the augmented system reduces to the classical Euler system with constant porosity in each half-plane. In par-
ticular, there exists at most three ordered simple waves in each half-plane leading to an important number of potential con-
figurations. Nevertheless, the admissible configuration number will be drastically cut down thanks to the following sign
criterion.

Definition 4 (Sign criterion). The sign velocity does not change across the interface x ¼ 0.

We apply the Rankine–Hugoniot condition to the conservative mass conservation equation of system (2) for the contact
discontinuity associated to k0. Since the shock velocity is null, we get ½/qu� ¼ 0 at interface x ¼ 0, hence the sign of u is pre-
served for positive density and porosity.

Proposition 5. The following successions of waves and constant states
ðaÞ f3�w;0�w;1�wg; ðbÞ f3�w;0�w;2�wg;
ðcÞ f2�w;0�w;1�wg; ðdÞ f2�w;0�w;2�wg;
are not admissible.

Proof. We present the proof for the case ðaÞ. Let denote by Vl and Vr the constant states situated on the left and right of the
interface x ¼ 0. Since we deal with rarefactions or entropic shocks, the Lax entropy condition yields
k3ðVlÞ < 0; k1ðVrÞ > 0:
It results that ul < 0 while ur > 0 which is a contradiction with the sign criterion, thus the succession ðaÞ is not admissible.
The other successions are treated in the same way. h

We list in Fig. 2 the configurations which satisfy both the sign and the stability configuration criterions. Configurations
A;B; C and D involve the four simple waves only one time (see Andrianov and Warnecke [3]). The two last configurations
F and G correspond to the situation when the 1�w or the 3�w waves are splitted by the interface. We have not presented
here the resonant situations when the 1�w or the 3�w wave is superposed with the 0�w wave. To characterize more
precisely the two last situations, we study in the next subsection the transition across the interface when the porosity
changes.

5.4. The MACH criterion

Across the porous interface x ¼ 0, the state Vl changes to the state Vr in function of the porosity variation. Since mass and
energy equations in system (2) are written in a conservative form, we deduce the Rankine–Hugoniot condition across the
contact discontinuity k0 :
½/qu� ¼ 0; ½uð/Eþ /PÞ� ¼ 0: ð30Þ
We cannot use the classical Rankine–Hugoniot condition for the impulsion equation since there is no conservative form but
since we deal with a contact discontinuity, we use the Riemann invariants associated to the simple wave 0�w (see Andria-
nov and Warnecke [3, p. 881]):
w1
0ðVÞ ¼ /qu; w2

0ðVÞ ¼
P
qc ; w3

0ðVÞ ¼ u2 þ 2cP
ðc� 1Þq : ð31Þ



Fig. 2. Admissible configurations respecting the sign and the stable configuration criterions.
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We note that w1
0 and w3

0 correspond to relations (30) while the entropy invariant w2
0 comes from the impulsion equation.

Moreover, the three invariants provide the same equations which characterize the steady-state solutions (8) (see Chinnayya
et al. [8, p. 12] for the shallow-water problem).

For a given left state Vl of porosity /L, we seek a right state of porosity /R which preserves the Riemann invariants (31). To
this end, we denote by
D ¼ /Lqlul; S ¼ Pl

qc
l

; H ¼ u2
l þ

2cPl

ðc� 1Þql
; ð32Þ
and we seek qr;ur and Pr such that w1
0ðVrÞ ¼ D;w2

0ðVrÞ ¼ S;w3
0ðVrÞ ¼ H. After some algebric manipulations, the problem con-

sists in finding the density as a solution of the scalar equation
gðq; S;HÞ ¼ � D
/R

� �2

; ð33Þ
where we have defined
gðq; S;HÞ :¼ 2cS
c� 1

qcþ1 � q2H: ð34Þ
If we manage to compute q, we obtain the pressure P and the velocity u which preserve the entropy S and the flux D. We now
deal with the calculation of q. Differentiation of function g gives
g0ðqÞ ¼ 2q
cðcþ 1Þ
c� 1

Sqc�1 � H
� �

:

The derivative only vanishes at point qson ¼ qsonðH; SÞ given by cqc�1
son ¼ ðc�1ÞH

ðcþ1ÞS . Since c > 1, function g0 is positive for q > qson

and negative for q < qson. To sum up, we have the proposition.

Proposition 6. Function g admits a minimum at point qson which only depends on S and H characterized by
cqc�1
son ¼

ðc� 1ÞH
ðcþ 1ÞS and gðqsonÞ ¼

1� c
1þ c

Hq2
son < 0:
g is a decreasing function on interval ½0;qson� and an increasing function on interval ½qson;þ1½.
Let denote by uson; Pson and cson the respective velocity, pressure and sound velocity associated to qson, then u2

son ¼ c2
son.

Moreover, we have

� if q > qson, then u2 < c2 (subsonic branch),
� if q < qson, then u2 > c2 (supersonic branch).
For H and S given, function g reaches the minimum at the sonic point qson. Consequently, for a given D, we deduce the
minimum value /min ¼ /minðD; S;HÞ such that Eq. (34) has a solution given by
c� 1
cþ 1

Hq2
son ¼

D
/min

� �2

:
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Hence, we get
/2
min ¼

ðcþ 1ÞD2

ðc� 1ÞHq2
son
: ð35Þ
The solutions of Eq. (34) are detailed in the following corollary.

Corollary 1. Let ð/;D; S;HÞ be fixed and qson be the density associated to S and H. We denote by
vð/;D; S;HÞ ¼ D
/

� �2

þ gðqsonÞ ¼
D
/

� �2

þ 1� c
1þ c

Hq2
son:
We have the three situations:
1. If vð/;D; S;HÞ < 0 (i.e. / > /min), there are two solutions qsup < qson and qsub > qson for Eq. (33).
2. If vð/;D; S;HÞ > 0 (i.e. / < /min), there is no solution for Eq. (33).
3. If vð/;D; S;HÞ ¼ 0 (i.e. / ¼ /min), there is the unique solution qson for Eq. (33).

In case (1) two solutions are available and the question of the choice is crucial. For example, assume that we have a
prescribed left subsonic state Vl ¼ ð/L;ql;ul; PlÞ. For /R in the vicinity of /L, we have two possible solutions but only one be-
longs to the same subsonic branch q > qson. For continuity reason, it is judicious that the solution �q of equation

gðqÞ ¼ � D
/R

� �2
belongs to the subsonic branch. Chinnayya et al. [8, p. 13] give a clever justification for the shallow-water

problem using a regularisation of the topography while Goatin and Le Floch [14, p. 891] state a similar criterion.

Definition 5 (MACH criterion). The subsonic or supersonic regimes are preserved across the interface. If Vl and Vr are the
states on the left and right sides of the contact discontinuity 0�w then they are both subsonic or supersonic.

Note that the MACH criterion does not apply in case of a sonic state. For example, if Vl is sonic, Vr could be subsonic or
supersonic. A direct consequence of the MACH criterion concerns the splitting of the 1�w or 3�w waves.

Proposition 7. The simple waves 1�w or 3�w cannot be splitted with two constant states on both sides of the interface x ¼ 0.

Proof. We give the proof when the 1�w wave is splitted into two parts leading to the configuration
F ¼ f1�w;0�w;1�w;2�w;3�wg represented in Fig. 4. The 1�w wave is splitted by the 0�w wave with two constant
states on both sides of the interface with V l on the left and Vr on the right. Due to the presence of the 1�w in the half-plane
Pþ, state Vr is supersonic with ur > cr whether the simple wave is a rarefaction or an entropic shock thanks to the Lax con-
dition. In consequence, the sign and MACH criterions yield that ul > cl. We now deal with the 1�w which separates the two
constant states VL and Vl in P�. Since Vl satisfies ul > cl, the 1�w can not be a rarefaction because Vl belongs to the P� half-
plane. On the other hand, the Lax condition says uL � cL > r1 > ul � cl > 0 hence the 1� s shock velocity r1 is positive which
is a contradiction with the assumption that the shock belongs to P�. h
5.5. The splitting wave configurations LR and RR

Let us consider the situation where the 1�w simple wave is splitted into two waves by the interface x ¼ 0. Propo-
sition 7 says that there is at most a constant state on one side of the interface. Consequently, the 1�w wave situated on
the other side is a rarefaction which touches the interface at x ¼ 0. We present in Fig. 5 the two situations for the 1�w
wave whether the rarefaction is on the left or on the right leading to the configuration LR1 (Left Rarefaction for the
1�w wave) and RR1 (Right Rarefaction for the 1�w wave). Similar configurations denoted by LR3 and RR3 hold for
the 3�w wave splitting.
Fig. 3. Function g: the minimum is attained at point qson .



Fig. 4. The 1�w is splitted with two constant states on both sides of the interface. Such a situation is not available since the MACH and sign criterions are
not respected.

Fig. 5. The 1�w is splitted into a rarefaction on one side and a constant state on the other side which provides the following configurations whether the
rarefaction is on the left (LR1 configuration) or on the right (RR1 configuration) of the interface.
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Such configurations have been proposed by Noussair [22] (p. 324, case 6 and 8) for the scalar nonconservative problem,
by Noussair [23, p. 61, cases Dn], Chinnayya et al. [8, p. 19, case d], Alcrudo and Benkhaldoun [1, p. 659, cases 6.1.2, 6.1.4,
6.2.2, 6.2.4 for examples] for the shallow-water problem, by Le Floch and Thanh [20, p. 791, case C2.1 and C2.2] for the non-
conservative isothermal Euler problem, by Lowe [21] for the two-phase flow problem, by Goatin and Le Floch [14, p. 897,
case 2a(A) and case 2b(A0)] for a general nonconservative hyperbolic system. We now analyse such a situation where we
shall prove the important result: the rarefaction takes place only on the lower porosity side.

Proposition 8. The 0�w wave parts the 1�w or 3�w simple waves in the following way (see Fig. 6 for the configuration
designations).

Rarefaction from P�. We assume there is a rarefaction in the P� half-plane which reaches the interface x ¼ 0 to a limit state Vl

such that ul ¼ �cl and jumps to a constant state Vr on the right:
� If /L > /R, there is no solution;
� If /L < /R, there is two possibilities:

*a 1� r rarefaction with ul;ur positive and Vr supersonic (case LR1),
*a 3� r rarefaction with ul;ur negative and Vr subsonic (case LR3).
Rarefaction from Pþ. We assume there is a rarefaction in the Pþ half-plane which reaches the interface x ¼ 0 to a limit state Vr

such that ur ¼ �cr and jumps to a constant state Vl on the left:
� If /L < /R, there is no solution;
� If /L > /R, there is two possibilities:

*a 1� r rarefaction with ul;ur positive and Vl subsonic (case RR1),
*a 3� r rarefaction with ul;ur negative and Vl supersonic (case RR3).
Proof. We only deal with the left rarefaction. We reach the state Vl with a 1� r or a 3� r rarefaction from the left such that
u2

l ¼ c2
l . For the limit state, we associate the values of D; S and H given by relations (32) and we seek a solution �q of the

equation
gðqÞ þ D
/R

� �2

¼ 0: ð36Þ
� �2 � �2

� If /R < /L then D

/R
> D

/L
. Since the left state is sonic, function g attains its global minimum at point ql and we

have gðqÞ þ D
/L

� �2
P gðqlÞ þ D

/L

� �2
¼ 0 for all q > 0. It results that gðqÞ þ D

/R

� �2
> 0 and Eq. (36) has no solution.



Fig. 6. Admissible configurations where the 1�w or the 3�w simple waves are splitted by the 0�w contact discontinuity. Configurations LR1 and RR1

correspond to the 1�w wave with /L < /R and /L > /R , respectively while configurations LR3 and RR3 correspond to the 3�w wave with /L < /R and
/L > /R , respectively.
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� Assume now that /R > /L, we then have D
/R

� �2
< D

/L

� �2
. Since gðqlÞ þ D

/L

� �2
¼ 0, we deduce that gðqlÞ þ D

/R

� �2
< 0.

From Proposition 6 there exists two solutions qsub > qson ¼ ql and qsup < qson ¼ ql for Eq. (36). We now distinguish
the situations whether we have a 1� r or a 3� r rarefaction.
* FOR A 1� r RAREFACTION (CONFIGURATION LR1). We have, on one hand, a 1� r rarefaction in the half-plane P�
from the VL state to a Vl state located at x ¼ 0 where Vl is prescribed with the condition ul ¼ cl and we have, on the
other hand, a 1�w simple wave in the half-plane Pþ. We cross the interface x ¼ 0 using the parameter /R to pro-
vide state Vr on the right side of the interface. Since ql is the minimum of function g and /R > /L, there is two solu-
tions: qsub for the subsonic branch and qsup for the supersonic branch. Since there exists a 1�w wave in the half-
plane Pþ, then Vr must be supersonic whether the wave is a rarefaction or an entropic shock. Hence, we have to
choose �q ¼ qsup.
* FOR A 3� r RAREFACTION (CONFIGURATION LR3). We have, on one hand, a 3� r rarefaction in the half-plane P�
from the Vb state to a Vl state located at x ¼ 0 and we have, on the other hand, a 3�w simple wave in the half-
plane Pþ. As in the previous case, we have two possible solutions for the state Vr ¼ VR situated on the right side
of the interface. Since there exists a 3�w wave in the half-plane Pþ, then VR must be subsonic and we have to
choose �q ¼ qsub. h
To sum up, we propose the following criterion when a rarefaction touches the porous interface.

Definition 6 (Rarefaction in porous media criterion). A rarefaction can only reach the interface from the lower porosity
side.

Remark 5. To our knowledge, such a criterion has not been clearly brought to the fore before. For the shallow-water prob-
lem, Chinnayya et al. [8, p. 19] show that the transition with a rarefaction reaching the interface only occurs on the lower
vertical height side. Moreover, in the general case of nonconservative hyperbolic systems studied by Goatin and Le Floch
[14], all the rarefactions reaching the interface satisfy the criterion in Definition 6.

Remark 6. When a k�w wave splitting occurs, we have shown that the first part of the wave situated on the lower porous
side must be a rarefaction. The second part of the wave (in the higher porosity side) is not a priori a rarefaction and could also
be a shock. We shall present examples of various configurations in the numerical test section where the second part of the
k�w wave is a rarefaction or a shock.
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5.6. The resonant configurations

Since the eigenvalues are not strictly ordered due to the presence of the eigenvalue k0 ¼ 0, the question arises when a
k� s shock crosses the interface leading to the so-called resonant situation. We have to treat two situations whether the
k�w wave is splitted (with a rarefaction on one side) or not.

The simpler situation concerns a simple k� s shock which crosses the interface. The k� s shock splits the 0�w contact
discontinuity into two parts where an intermediate porosity /s is introduced (see Goatin and Le Floch [14] p. 892 case 1a (C)
for example). We denote by R1 the resonant configuration with the 1� s shock while R3 represents the resonant configura-
tion with the 3� s shock.

A more complex situation arises when the k�w is splitted into two parts: a rarefaction on the lower porosity side and a
stationary shock of null velocity (see Goatin and Le Floch [14] p. 897 case 2a (C) and Chinnayya et al. [8] p. 22 Section 3.3.4
for examples). The shock itself splits the contact discontinuity and we shall one more time introduce an intermediate poros-
ity. We denote by LRR1 and LRR3 the Left Rarefaction and Resonant configurations associated to the 1�w and 3�w, respec-
tively when /L < /R while RRR1 and RRR3 are the Right Rarefaction and Resonant configurations when /L > /R.
5.6.1. Configurations R1 and R3

The resonant configuration R1 appears when the 1� s shock and the 0�w are superposed. To illustrate the phenomena,
let us consider the situation where we have a 1� s shock on the left of the interface (configuration C in Fig. 7). We increase
the left velocity uL until the shock reaches the interface x ¼ 0. At that very moment, the shock touches the left side of the
contact discontinuity. If we increase a little bit the velocity, the shock shares the interface in two parts introducing an inter-
mediate porosity /s 2 ½/L;/R� leading to the following configuration f0�w;1� s;0�wg at the same point x ¼ 0 (R1 config-
uration). We increase one more time the velocity until the 1� s shock reaches the right side of the interface, i.e. /s ¼ /R.
Configuration R1 respects the stability configuration criterion since the 1� s shock stays on the interface for small perturba-
tions of VL and VR but the intermediate porosity /s changes. The same situation arises with a 3�w shock leading to the R3

resonant configuration.
Such configurations have been proposed by Goatin and Le Floch [14, p. 896, case 2b(C0)] for a general nonconservative

hyperbolic system.
Fig. 8. Resonant configuration R1. The stationary 1� s shock occurs at an intermediate porosity /s .

Fig. 7. Configuration R1 is a transition between configurations C and D with a 1� s shock.
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We now detail the construction of configuration R1 composed of two 0�w contact discontinuities shared by a stationary
1� s shock. We assume that the physical states are Vl and Vr on the left and right of the interface. To construct the transition,
we introduce an intermediate porosity /s and we consider the following waves succession linking Vl to Vr (see Fig. 8).
Fig. 9.
sharing
– From Vl to Vs;l: we have a 0�w contact discontinuity from /L to an intermediate porosity /s 2 ½/L;/R�.
– From Vs;l to Vs;r: we have a stationary 1� s shock of velocity r1 ¼ 0.
– From Vs;r to Vr: we have a 0�w contact discontinuity from /s to /R.
The porosity /s has to be chosen such that the intermediate states Vs;l and Vs;r define a stationary shock. Since we require
an 1� s entropy shock, the Lax condition implies us;l � cs;l > 0 > us;r � cs;r hence Vs;l is supersonic while state Vs;r is subsonic.
Since Vs;l is a supersonic state, the MACH criterion says that the left state Vl must be a supersonic state while Vs;r and Vr have
to be subsonic states.

To compute the two states and the intermediate porosity, we proceed in the following way. For a given Vl, we define the
unique qs;l ¼ qs;lð/sÞ on the supersonic branch of g (see Fig. 3) such that we satisfy the relation
gðqs;l; Sl;HlÞ ¼
2cSl

c� 1
qcþ1

s;l � q2
s;lHl ¼ �

Dl

/s

� �2

; ð37Þ
where Hl; Sl and Dl are computed with the left state Vl. In the same way for a given Vr , we define a unique qs;r ¼ qs;rð/sÞ on the
subsonic branch of g such that we satisfy the relation
gðqs;r ; Sr ;HrÞ ¼
2cSr

c� 1
qcþ1

s;r � q2
s;rHr ¼ �

Dr

/s

� �2

; ð38Þ
where Hr ; Sr and Dr are computed with the right state Vr .
With qs;l and qs;r in hand, we compute the velocities us;l;us;r and the pressures Ps;l; Ps;r and we fix the intermediate porosity

/s using the stationary shock condition
qs;lus;l ¼ qs;rus;r : ð39Þ
Of course /s is implicitely given by relation (39) and an iterative algorithm should be employed to compute an approxima-
tion of /s such that we satisfy the three relations (37)–(39).

5.6.2. Configurations LRR1 and LRR3

We now deal with a more complex situation when a k�w wave is splitted into a k� r rarefaction on the left side and a
k� s shock superposed with the 0�w contact discontinuity. For such a situation, we must have /L < /R such that the rar-
efaction occurs on the left side. We then obtain a Left Rarefaction and Resonant configuration LRR1 or LRR3 for the 1�w or
the 3�w, respectively.

Configuration LRR has been studied by Chinnayya et al. [8, p. 19, case c] for the shallow-water problem, by Goatin and Le
Floch [14, p. 897, case 2a(C)] for a general nonconservative hyperbolic system.

We detail the LRR1 configuration as an example (see Fig. 9 for the notation).

– A 1� r rarefaction takes place on the left of the interface from VL to the sonic state Vl.
– From Vl to Vs;l: we have a 0�w contact discontinuity from /L to an intermediate stage /s 2 ½/L;/R� such that Vs;l is

supersonic.
– From Vs;l to Vs;r: we have a stationary 1� s shock of velocity r1 ¼ 0 and Vs;r is subsonic.
– From Vs;r to Vr: we have a 0�w contact discontinuity from /s to /R.
Left rarefaction and resonant configuration LRR1 with /L < /R . The 1�w is constituted of a rarefaction on the left and a 1� s stationary shock
the 0�w contact discontinuity with an intermediate porosity /s .
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Like the R1 configuration, one has to choose the intermediate porosity such that Vs;l and Vs;r are linked with a stationary
shock of null velocity and respect the entropy Lax condition u1;l � c1;l > 0 > u1;r � c1;r . To compute the two states and the
intermediate porosity, we have to fix /s such that relations (37)–(39) are satisfied. The only difference with the configuration
R1 is that Vl is the sonic state which links VL with a 1� r rarefaction.

5.6.3. Configurations RRR1 and RRR3

We now analyse a similar situation when the k�w wave is splitted into a k� r rarefaction on the right side and a k� s
shock superposed with the 0�w contact discontinuity. For such a situation, we must have /L > /R such that the rarefaction
occurs on the right side. We then obtain a Right Rarefaction and Resonant configuration RRR1 or RRR3 for the 1�w or the
3�w, respectively.

We detail the RRR1 configuration as an example (see Fig. 10 for the notation).
Fig. 10.
sharing
– From Vl ¼ VL to Vs;l : we have a 0�w contact discontinuity from /L to an intermediate stage /s 2 ½/L;/R�.
– From Vs;l to Vs;r : we have a stationary 1� s shock of velocity r1 ¼ 0.
– From Vs;r to Vr : we have a 0�w contact discontinuity from /s to /R such that Vr is a sonic state.
– A 1� r rarefaction takes place on the right of the interface from Vr to Va.
Like the LRR1 configuration, one has to choose the intermediate porosity such that Vs;l and Vs;r are linked with a 1� s sta-
tionary shock of null velocity and respect the entropy Lax condition u1;l � c1;l > 0 > u1;r � c1;r . The only difference with the
configuration LRR1 is that the rarefaction is on the right and /s has to be chosen such that Vr is a sonic state. This last point
leads to a more complex problem from the numerical point of view when we solve the inverse Riemann problem.
6. The inverse Riemann problem

Let us consider the Riemann problem with initial left and right states VL and VR and assume that there exists an autosim-
ilar solution. We characterize the solution by its configuration C and the set ðP1;q2; P3;/RÞ where P1 is the pressure of the
constant state situated on the right of the 1�w wave, q2 is the density of the constant state situated on the right of the
2�w wave and P3 is the pressure of the constant state situated on the right of the 3�w wave. We then define an application
ðVL;VRÞ ! fRðVL;VRÞ ¼ fC; ðP1;q2; P3;/RÞg:
For the inverse Riemann problem, we proceed in a different way (see [2,3]). We assume that the left state VL is known and we
want to determine the right state VR (if it is possible) with the prescribe configuration C and intermediate values P1;q2; P3;/R,
i.e. we have to compute VR such that fRðVL;VRÞ ¼ fC; ðP1;q2; P3;/RÞg. Note that for a given set ðP1;q2; P3;/RÞ, we can obtain
different solutions for different configurations and some configurations have no solution.

6.1. Parameterization of the simple waves

To compute each intermediate state for the inverse Riemann problem, we shall use a parameterization of the k�w waves
in the simpler cases but configurations like Rk; LRk;RRk; LRRk and RRRk require some iterative algorithm we present in the se-
quel. We introduce some new notations to provide a parameterization of the simple waves. For a given k�w wave, we de-
note by Vk;l and Vk;r the left and the right states such that Vk;l is linked to Vk;r by the one-parameter characteristic curve in the
phase space. We construct the inverse Riemann problem solution in the following way:
Right rarefaction and resonant configuration RRR1 with /L > /R . The 1�w is constituted of a rarefaction on the right and a 1� s stationary shock
the 0�w contact discontinuity with an intermediate porosity /s .
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� For the 1�w and 3�w waves, the right state is fixed by the pressure setting P1;r ¼ P1 or P3;r ¼ P3.
� For the 2�w wave, the right state is fixed by the density setting q2;r ¼ q2.
� For the 0�w wave, the right state is fixed by the porosity setting /0;r ¼ /R.
6.1.1. Parameterization of the 1�w wave
We consider two states V1;l and V1;r separated by the simple wave 1�w which is a shock ðP1;r > P1;lÞ or a rarefaction

ðP1;r < P1;lÞ. For a given left state V1;l and a prescribed pressure of the right state P1;r ¼ P1, we deduce the other components
of V1;r with the following relation.
– If P1;r > P1;l, we have a shock and we compute.

q1;r ¼ q1;l
P1;lðc� 1Þ þ P1;rðcþ 1Þ
P1;lðcþ 1Þ þ P1;rðc� 1Þ ; u1;r ¼ u1;l �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP1;r � P1;lÞðq1;r � q1;lÞ

q1;rq1;l

s
:

The discontinuity moves with the velocity
r1 ¼
q1;lu1;l � q1;ru1;r

q1;l � q1;r
:

– If P1;r < P1;l, we have a rarefaction and we compute

q1;r ¼ q1;l
P1;r

P1;l

� �1
c

; c1;r ¼
ffiffiffiffiffiffiffiffiffiffi
cP1;r

q1;r

s
; u1;r ¼ u1;l þ

2
c� 1

ðc1;l � c1;rÞ;
with the left state sound velocity c1;l ¼
ffiffiffiffiffiffiffi
cP1;l
q1;l

q
. The rarefaction area is characterized by
u1;l � c1;l 6
x
t
6 u1;r � c1;r :
Note that the porosity does not change hence /1;l ¼ /1;r .

6.1.2. Parameterization of the 3�w wave
We consider two states V3;l and V3;r separated by the simple wave 3�w which is a shock ðP3;r < P3;lÞ or a rarefaction

ðP3;r > P3;lÞ. For the given left state V3;l and a prescribed pressure of the right state P3;r ¼ P3, we deduce the other components
with the following algorithm.
– If P3;r < P3;l, we have a shock and we compute.
q3;r ¼ q3;l
P3;lðc� 1Þ þ P3;rðcþ 1Þ
P3;lðcþ 1Þ þ P3;rðc� 1Þ ; u3;r ¼ u3;l �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP3;r � P3;lÞðq3;r � q3;lÞ

q3;rq3;l

s
:

The discontinuity moves with the velocity
r ¼
q3;ru3;r � q3;lu3;l

q3;r � q3;l
:

– If P3;r > P3;l, we have a rarefaction and we compute
q3;r ¼ q3;l
P3;r

P3;l

� �1
c

; c3;r ¼
ffiffiffiffiffiffiffiffiffiffi
cP3;r

q3;r

s
; u3;r ¼ u3;l �

2
c� 1

ðc3;l � c3;rÞ;
with the left state sound velocity c3;l ¼
ffiffiffiffiffiffiffi
cP3;l
q3;l

q
. The rarefaction area is given by
u3;l þ c3;l 6
x
t
6 u3;r þ c3;r :
Note that the porosity does not change hence /3;l ¼ /3;r .

6.1.3. Parameterization of the 2�w wave
For a given left state V2;l, we have u2;r ¼ u2;l; P2;r ¼ P2;l since pressure and velocity are unchanged across the contact dis-

continuity moving with the velocity r ¼ u2;l ¼ u2;r . We prescribe the right density q2;r ¼ q2 and the sound velocity for the
right state is given by c2;r ¼

ffiffiffiffiffiffiffi
cP2;r
q2;r

q
.

6.1.4. Parameterization of the 0�w wave
For a given left state V0;l, we compute
D ¼ /Lq0;lu0;l; S ¼ P0;l

qc
0;l

; H ¼ u2
0;l þ

2cP0;l

ðc� 1Þq0;l
:
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We then seek the solutions of the nonlinear equation
2cS
c� 1

qcþ1 � q2H ¼ � D
/R

� �2

;

using for example an iterative Newton algorithm. Let cqc�1
son ¼ ðc�1ÞH

ðcþ1ÞS be the density corresponding to the sonic state, following
Corollary 1, we compute vð/R;D; S;HÞ and we have the three situations:
� If vð/R;D; S;HÞ > 0, there is no solution.
� If vð/R;D; S;HÞ ¼ 0, there is the unique solution q0;r ¼ qson.
� If vð/R;D; S;HÞ < 0, there are two solutions and we choose q0;r ¼ qsup if V0;l is a supersonic state and q0;r ¼ qsub if V0;l is

a subsonic state.
We then obtain the two other components with
u0;r ¼
D

/Rq0;r
; P0;r ¼ P0;l

q0;r

q0;l

 !c

:

6.2. Resolution of the inverse Riemann problem

Let VL be the left state and ðP1;q2; P3;/RÞ be the set of prescribed intermediate values. We aim to construct all the inter-
mediate states and VR which respect a given configuration C. We proceed with a ‘‘Try and Check” technique in the following
manner. We start from the left side with VL, then we compute the first intermediate constant state Va situated just after the
1�w. Then we check if the wave we have produced corresponds to the pattern of the configuration we are supposed to re-
spect. If the wave is wrong (for example Va is supersonic whereas configuration C requires a subsonic state), we stop the
procedure and no solution is available for such a configuration. If the 1�w wave is admissible, we continue with the second
wave and so on.

6.2.1. Configurations A;B;C;D
We only detail the algorithm for the configuration C ¼ f1�w;2�w;0�w;3�wg, the other cases are similar. We

shall employ the notations introduced in Fig. 2. Let VL be the left state and ðP1;q2; P3;/RÞ the set of intermediate
values.
– If PL < P1 we have a shock of velocity r1 otherwise we have a rarefaction. We then compute the new state Va. In case
of a shock, we have to check that r1 < 0 whereas in case of a rarefaction we have to check that ua � ca < 0. If the con-
dition is not satisfied, the C configuration is not available and we stop the algorithm.

– Furthermore the velocity ua has to be positive. Indeed, the velocity sign does not change across the interface x ¼ 0 and
the configuration C stipulates that k2 > 0. If ua < 0 then the C configuration is not available.

– Using /R, we compute the intermediate state Vb where we choose the subsonic solution using a Newton algorithm to
solve Eq. (34). If there is no solution, the configuration C is not available.

– We compute the state Vc after the contact discontinuity prescribing the density q2.
– If P3 < Pc we have a shock of velocity r3 whereas we have a rarefaction if P3 > Pc . We compute the state Vd using the

parameterization. In case of a shock, one has to check that r3 > uc.
The state Vd corresponds to the right state VR we shall use in the simulations.

6.2.2. Configurations LR1 and LR3

The configurations LR are a little bit more complex. We only deal with the LR1 case since the LR3 configuration is com-
puted in the similar manner. We have to construct a rarefaction which joins the left state VL to the sonic point. We shall
employ the notations introduced in Fig. 6. The algorithm is the following.
– We first check that /L < /R and that uL � cL < 0. If one of these conditions is not satisfied, configuration LR1 is not
available.

– We compute the sonic state Vl using the 1� r rarefaction such that ul ¼ cl.
– We compute the state Vr solving relation (34). We take the solution qsup corresponding to the supersonic state.
– If P1 < Pr we have a rarefaction while we have a shock of velocity r1 if P1 > Pr and we compute an intermediate super-

sonic state Va with pressure P1. In case of a shock, we have to check that r1 > 0. If r1 < 0 the LR1 configuration is not
available.

– We compute the state Vb using the contact discontinuity where we prescribe the density q2.
– We compute the state Vc using the prescribed pressure P3. In case of a shock, we have to check that r3 > ub.
The state Vc corresponds to the right state VR we shall use in the simulations.
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6.2.3. Configurations RR1 and RR3

The configurations RR are more complex than configurations LR because we have to guess the intermediate subsonic state
Vl on the left of the interface such that Vr is exactly a sonic state.

6.2.3.1. Computation of the Vl and Vr states. A Lagrange-like iterative procedure has to be employed to compute the interme-
diate subsonic state Vl. To this end we introduce the intermediate pressure Pl and denote by Vl the corresponding state ob-
tained with a 1� r rarefaction if Pl < PL or a 1� s shock if Pl > PL. For such a Vl, we compute the associated Vr on the other
side of the interface corresponding to the right porosity /R where we solve Eq. (34) taking the subsonic solution qr ¼ qsub. We
then consider the function
Pl ! f ðPlÞ ¼ cr � ur :
If one has f ðPlÞ ¼ 0, the Vr state is sonic and we obtain an admissible state Vl. To compute Pl we adapt the Lagrange algorithm
to function f. We take PL and P1 as initial guess to perform the computation. If the algorithm converges we obtain an approx-
imation of Vl and Vr .

6.2.3.2. Computation of the other states. Once we have Pr , we check that P1 < Pr since we must have a rarefaction and we
compute the intermediate state Va. If P1 > Pr configuration RR1 is not available. The next operations are the following.

– We compute the state Vb after the contact discontinuity prescribing the density q2.
– If P3 < Pb we have a shock of velocity r3 whereas we have a rarefaction if P3 > Pb. We compute the state Vc using the

parametrization. In case of a shock, one has to check that r3 > ub.
The state Vc corresponds to the right state VR we shall use in the simulations.

6.2.4. Configurations R1 and R3

We now deal with the resonant configurations. We first consider the simpler cases when a k� s shock splits the 0�w
wave. We shall employ the notations introduced in Fig. 8. The main difficulty is to determine the intermediate porosity such
that we have a stationary shock between Vl;s and Vr;s. We only treat the case R1 but the R3 configuration is similar.

6.2.4.1. Computation of /s and the Vr state. First of all, if state Vl is not supersonic then configuration R1 is not available. Now,
for a given /s, we compute the supersonic state Vl;s linking Vl when the porosity changes from /L to /s solving Eq. (37). With
Vl;s in hand, we compute Vr;s using the stationary 1� s shock parameterization:
us;r ¼ us;l �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPs;r � Ps;lÞðqs;r � qs;lÞ

qs;rqs;l

s
; M ¼ qs;lus;l ¼ qs;rus;r :
After some algebric manipulation we get
M2 1
qs;l
� 1

qs;r

 !
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ps;r � Ps;l

q
:

On the other hand, we have the relation
qs;r ¼ qs;l
Ps;lðc� 1Þ þ Ps;rðcþ 1Þ
Ps;lðcþ 1Þ þ Ps;rðc� 1Þ ;
and combining the two equations, we obtain
Ps;r ¼
2M2

ðcþ 1Þqs;l
� c� 1

cþ 1
Ps;l: ð40Þ
We then deduce qs;r and us;r , hence the state Vs;r . We compute the density qr taking the subsonic solution of Eq. (38). We then
deduce the state Vr . The intermediate porosity has to be fixed such that Pr ¼ P1 where P1 is the prescribed pressure. To this
end, we introduce the function
/! f ð/Þ ¼ Pr � P1;
and we seek /s such that f ð/sÞ ¼ 0. We use a Lagrange method where we initialise the algorithm with / ¼ /L and / ¼ /R.

6.2.4.2. Computation of the other states. Assume that state Vr is well-calculated, we compute the state Va after the 2�w con-
tact discontinuity using the q2 density. We finally determine state VR using the pressure P3. If P3 > Pa we have a rarefaction
while we have a shock if P3 < Pa. In this last case, we have to check that r3 > ua to obtain an admissible R1 configuration.

6.2.5. Configurations LRR1 and LRR3

We now deal with the LRR configuration ð/L < /RÞ where a k�w wave is splitted into a rarefaction on the left side of the
interface and a stationary shock. We shall employ the notations introduced in Fig. 9. First of all, the VL state has to be sub-
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sonic since we have a 1� r rarefaction in the half-plane P�. From VL, we compute the sonic state Vl linked to VL by the 1� r
rarefaction such that ul ¼ cl. We proceed computing the stationary shock.

6.2.5.1. Computation of /s and the Vr state. Note that state Vl is sonic and we have to compute a supersonic Vs;l state and a
subsonic Vs;r state. To this end, for a given /s, we compute the supersonic state Vl;s linking Vl when the porosity changes from
/L to /s solving Eq. (37). With Vl;s in hand, we compute Vr;s using relation (40). We then deduce qs;r and us;r , hence the state
Vs;r . Finally we compute Vr solving Eq. (38) when the porosity changes from /s to /R. The intermediate porosity has to be
fixed such that Pr ¼ P1 where P1 is the prescribed pressure. To this end, we introduce the function
/! f ð/Þ ¼ Pr � P1;
and we seek /s such that f ð/sÞ ¼ 0. We use a Lagrange method where we initalise the algorithm with / ¼ /L and / ¼ /R.

6.2.5.2. Computation of the other states. We compute the state Va after the 2�w contact discontinuity using the q2 density.
We finally determine state VR using the pressure P3. If P3 > Pa, we have a rarefaction while we have a shock if P3 < Pa. In the
last case, we have to check that r3 > ua to obtain an admissible LRR1 configuration.

6.2.6. Configurations RRR1 and RRR3

We treat the RRR configuration ð/L > /RÞwhere a k�w wave is splitted into a rarefaction on the right side of the interface
and a stationary shock. We shall employ the notations introduced in Fig. 10. The configuration is more complex to solve than
the LRR configuration since we have to compute /s such that Vr is a sonic state.

6.2.6.1. Computation of /s and the Vr state. To obtain such a /s we proceed as follows. Let /s 2 ½/L;/R�, we link the state
Vl ¼ VL to the state Vs;l solving Eq. (37) when the porosity changes from /L to /s where we choose the supersonic solution.
We then compute the Vs;r subsonic state using relation (40) of the 1� s stationary shock. Finally we determine with Eq. (35)
the porosity /min such that we obtain a sonic state Vr . The point is that Vr should be sonic with /min ¼ /R so we consider the
function
/s ! f ð/sÞ ¼ /min � /R;
and we seek /s such that f ð/sÞ ¼ 0. We use a Lagrange algorithm where we initialise the algorithm with / ¼ /L and / ¼ /R.
Assume that we have determined /s and Vr , then we check that Pr < P1 such that we can construct a rarefaction.

6.2.6.2. Computation of the other states. We compute the state Va after the 2�w contact discontinuity using the q2 density.
We finally determine state VR using the pressure P3. If P3 > Pa, we have a rarefaction while we have a shock if P3 < Pa. In this
last case, we have to check that r3 > ua to obtain an admissible RRR1 configuration.

7. Numerical results

Numerical investigations have been carried out to test the numerical scheme based on the Rusanov flux and the noncon-
servative flux given in Section 3. Two sets of tests are proposed: the first set of tests aims to check the ability of the numerical
method to solve the Riemann problem for several characteristics situations (rarefaction and resonant configurations) while a
second set of tests is dedicated to the comparison between the first- and second-order schemes with a regular porosity func-
tion to check the performance of the decomposition into nonconservative flux and source term. Computations are performed
using the OFELI library of Touzani [34] to handle the mesh.

7.1. New Sod tests

We consider a Sod tube on domain [0,2] where the initial condition discontinuity is located at point x ¼ 0:8. All the sim-
ulations have been performed using a uniform subdivision of 800 elements and we adapt the time step to guarantee the
scheme stability using the CFL condition deriving from the conservative part of the flux:
Dt 6
Dx

2 max
i
ðjuij þ ciÞ

: ð41Þ
First-order schemes are stable if the CFL condition is respected but we have to cut by two (and sometimes by three) the
time step to carry out simulations with the second-order scheme to preserve stability. Shocks are less diffused with the high-
er-order method leading to larger jumps across the interface. We suspect that the explicit nonconservative numerical flux
requires smaller time step to overcome the larger variations of pressure and density when we employ second-order scheme.

We face to an important number of configurations and we have selected a representative set of situations we shall com-
pare to the exact solution obtained with the inverse Riemann problem. Configurations A;B;C and D are the simpler cases
where the four waves are clearly isolated. Such a situation have been yet studied [3] and we only present the comparison
between the numerical solution and the exact solution with the configuration C. The main point is to check that the contact
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discontinuity consecutive to porosity jump is well-calculated. We then proceed with the LR and RR configurations when the
1�w is splitted into a rarefaction reaching the sonic point on one side and a second contribution of the 1 �w wave on the
other side. We consider the two configurations whether /L < /R or /L > /R and for each case, two simulations have been
carried out where the second part of the 1�w wave is a rarefaction or a shock. We finally deal with the resonant configu-
ration where a 1� s stationary shock splits the 0�w contact discontinuity. We have first considered the R1 situation where
the 1�w is reduced to the 1� s stationary shock. We then proceed with more complex configurations like LRR1 and RRR1.
Numerical simulations have been carried out with /L < /R to obtain a left rarefaction reaching the sonic point and a 1� s
stationary shock sharing the 0�w discontinuity at an intermediate porosity /s 2 ½/L;/R�. A similar configuration has been
studied when /L > /R.
7.1.1. Configuration C
Comments. Table 1 gives the states obtained with the inverse Riemann problem while Fig. 11 shows the comparison be-

tween the exact solution and the numerical approximations for the C configuration. Viscosity effects of the Rusanov flux are
strongly reduced by the MUSCL procedure and we obtain an accurate approximation of the solution. In particularly, we note
that the 0�w contact discontinuity situated at x ¼ 0:8 is correctly resolved.
7.1.2. Configuration LR1 with a rarefaction for the second part of the wave
Comments. Table 2 gives the states obtained with the inverse Riemann problem while Fig. 12 shows the comparison be-

tween the exact solution and the numerical approximations for the LR1 configuration. We note that the constant state sit-
uated just after the contact discontinuity is not well-approximated whereas all the other states are well-evaluated. Our point
Table 1
Configuration of type C ¼ f1� r;0�w;2�w;3� sg.

/ q ðkg m�3Þ u ðm s�1Þ P (Pa) Mach

VL 0.9 3.6 100 300,000 0.29277
Vl 0.9 2.69478 196.113 200,000 0.608399
Vr 1.0 2.82888 168.135 214071 0.51656
Va 1.0 3.4 168.135 214071 0.566308
VR 1.0 3.23885 153.785 200,000 0.523034
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